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Abstract— In this paper, we present a spiking neural network
architecture that autonomously learns to control a 4 degree-of-
freedom robotic arm after an initial period of motor babbling.
Its aim is to provide the joint commands that will move the
end-effector in a desired spatial direction, given the joint con-
figuration of the arm. The spiking neurons have been simulated
according to Izhikevich’s model, which exhibits biologically
realistic behaviour and yet is computationally efficient. The
architecture is a feed-forward network where the input layers
encode the intended movement direction of the end-effector in
spatial coordinates, as well as the information that is given
by proprioception about the current joint angles of the arm.
The motor commands are determined by decoding the firing
patterns in the output layers. Both excitatory and inhibitory
synapses connect the input and output layers, and their initial
weights are set to random values. The network learns to map
input stimuli to motor commands during a phase of repetitive
action-perception cycles, in which Spike Timing-Dependent
Plasticity (STDP) strengthens synapses between neurons that
are correlated and weakens synapses between uncorrelated
ones. The trained spiking neural network has been successfully
tested on a kinematic model of the arm of an iCub humanoid
robot.

I. INTRODUCTION

IN this work, we present a neural network architecture that
autonomously learns to control a four degree-of-freedom

robotic arm in the three dimensional space. The problem of
controlling a robotic arm has attracted the attention of many
researchers in the past, with a common assumption being
that the kinematic model of the arm is a priori known. This
assumption enabled researchers to either introduce analytical
methods, which offer exact solutions for simple kinematic
chains, or propose solutions based on numerical methods.
Recently, there has been increasing interest in developing
methods that do not assume any a priori knowledge for
the arm’s kinematic model, but its kinematic properties are
derived through a learning procedure.

Bullock et al. [1] presented the DIRECT (Direction-to-
Rotation Effector Control Transform) model which is a
self-organizing neural network that learns, during a motor
babbling period, the mapping between joint commands and
the resulting spatial displacements of the end-effector. (Motor
babbling can be observed in babies, where a repetitive action-
perception cycle generates associative information between
the various representations.) Action is generated through
the Endogenous Random Generator (ERG) [2], which sends
random motor commands, and the results of these actions
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Fig. 1. The iCub.

in the spatial domain are perceived and associated. Outstar-
learning [3] is used in the DIRECT model for training the
network and modifying the synaptic weights. More recently,
Asuni et al. [4] were inspired by this approach and proposed
a neural network, also based on outstar learning, that aims
to control a robotic head for gazing points in the 3D space.

The present work is also influenced by the DIRECT model.
An important feature of the proposed network is that it con-
sists of individual spiking neurons that exhibit realistic be-
haviour and uses a biologically plausible learning mechanism
for modifying the synaptic weights, namely Spike Timing-
Dependent Plasticity (STDP). Spiking neural networks are
considered to be biologically realistic and many researchers
have lately used them for coordinate transformations ( [5],
[6]), object segmentation [7], visual pattern recognition [8],
etc.

The present paper is organized as follows. Section II
presents background information on controlling a robotic
arm. Section III introduces the spiking neural network,
the model of the spiking neuron, and the STDP learning
mechanism. Experiments are presented in section IV, while
the conclusions are given in section V.
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II. REACHING WITH A ROBOTIC ARM

Many tasks in robotics require the robot’s end-effector to
move between two points in space. The issue that arises,
however, is that while the task is naturally represented in
cartesian coordinates (world coordinates), the robot is only
able to control its arm through the motors and perform
the task in the joint space. The computation of the joint
coordinates that result in a desired spatial position of the
end effector is called inverse kinematics, and the problem is
ill-posed when considering arms with redundant degrees of
freedom since there could be multiple solutions. A simple
way to move the end-effector to its target position can
be achieved by considering each joint independently, and
incrementing its angle accordingly towards its final value at
the target configuration of the arm. However, this approach
is not competent for most applications as it cannot force the
end-effector to follow a desired path between the initial and
the target position. A synergy of angle changes at joints is
required. This issue can be resolved though by taking many
intermediate points along the desired path of the end-effector,
and using these points as “mid-term targets”. The sequence
of the joint angles that fix the end-effector at the intermediate
points can then be followed, forcing the end-effector to trace
the desired path. As discussed in [1], this approach has
two main shortcomings. Since there could be multiple joint
configurations that can result to the same spatial position of
the end-effector, it is possible to have discontinuity in the
joint space, and encounter, for example, two non-adjacent
angles between consecutive steps along the path for the same
joint. Moreover, due to the non-linearity of the mapping
function between joint angles and spatial position of the end-
effector, the linear combination of solutions is probably not
a solution itself.

To overcome these issues, we can follow an alternative
approach, and instead of computing the joint angles that
result in the desired spatial position of the end effector, we
can use small steps towards the target position and compute
at each step the joint velocities that move the end-effector in
the desired spatial direction. More specifically, let us assume
that the manipulator has M degrees of freedom and the joint
angles are denoted by ϑ = [ϑ1, ϑ2, . . . , ϑM ]. Let us also
assume that the spatial position of the end-effector is rep-
resented by the N -dimensional vector e = [e1, e2, . . . , eN ].
If we assume that the current joint configuration is given
by ϑ, and the joint velocities ϑ̇ result in the end-effector’s
spatial velocity ė, then:

ė = J(ϑ) · ϑ̇ (1)
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where J denotes the Jacobian and its value depends on the
joint configuration of the arm. As can be seen, each column
of the Jacobian corresponds to a single joint of the robot

and indicates the effect that a small change in its angle has
on the spatial position of the end-effector. The change in
the spatial position of the end-effector can be computed by
the sum of the individual changes in its position by each one
degree of freedom. Given that our aim is to compute the joint
commands ϑ̇ that will result in moving the end-effector in
the desired spatial direction ė, we can use eq.(1) and solve
with respect to ϑ̇:

ϑ̇ = J�(ϑ) · ė (3)

J�(ϑ) =
(
JT J

)−1
JT (4)

where J� and JT denote respectively the pseudo-inverse and
the transpose of the Jacobian at the joint configuration ϑ.

Thus, the approach is to (i) decompose the path that the
end-effector should follow into small steps, (ii) compute at
each step the spatial direction for the next movement, (iii)
compute the Jacobian at the current joint configuration (since
its value is only valid locally in the joint space), (iv) compute
the pseudo-inverse of the Jacobian, and finally, (v) compute
the joint commands ϑ̇ according to eq.(3). The linearity of
eq.(1) ensures that the linear combination of known solutions
will also give a valid solution. Also, the fact that the solution
found emerges by computing the small increments in the
joint angles ensures the continuity in the joint space along
the path.

In this paper, we present a spiking neural network that ex-
hibits the same functionality as the approach described above,
and consists of spiking neurons that have been modeled by
Izhikevich’s equations [10]. This neuron model is chosen
as it facilitates efficient simulation of real neurons with
biologically realistic behaviours. The network autonomously
learns to control a robotic arm with four degrees-of-freedom
in 3D space (we are interested only in the position, and
not orientation, of the end-effector) during an initial period
of motor babbling, using STDP ( [11], [17]) to strengthen
or weaken the synaptic weights between sensory and motor
neurons which are originally randomly set. During the period
of the action-perception cycle, proprioception stimulates sen-
sory neurons and encodes into the network the current joint
configuration. The Endogenous Random Generator (ERG)
randomly stimulates motor neurons and the resulting joint
commands move the end-effector in a certain spatial direc-
tion which is observed and encoded into the network. The
temporal correlation between neuronal firings is extracted
by the Spike Timing-Dependent Plasticity mechanism which
modifies the synaptic weights so that if the robotic arm is
at the pose just learned and the end-effector should move in
the same spatial direction, then the motor neurons that were
originally activated by ERG, should now be stimulated by
the current they receive from the input neurons. Currently,
the spatial position of the end-effector in the training stage
is computed by solving forward kinematic equations. Future
work will substitute this by including a visual pathway in the
network. Further details about the network and the learning
mechanism are given in the following section.
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III. THE SPIKING NEURAL NETWORK

The proposed neural network consists of spiking neurons
which are organized into seven input layers and four output
layers, as shown in Figure 2.1 We will denote for the rest
of the paper the i-th input layer and the j-th output layer
by Linput

i and Loutput
j , respectively. We use a population of

1200 neurons for each input layer, and a population of 800
neurons for each output layer. Four of the input layers Linput

i=1:4

encode the information that is given by proprioception, and
the firing pattern at each one of them indicates the angle at
the respective joint. The four joints of interest are located at
the shoulder (roll, pitch and yaw) and the elbow of the arm,
with their ranges being [−75o,−15o], [15o, 75o], [−10o, 50o]
and [15o, 75o]. The network encodes these angles after dis-
cretizing them into bins with 5o resolution. The remaining
three input layers Linput

i=5:7 represent the spatial direction that
the end-effector should move at the next time step, with each
layer encoding the projection of the 3D directional vector
to one of the world axes. The directions encoded are also
discretized using a 45o resolution, resulting in 26 possible
movements of the end-effector from its original position. The
input layers are connected all-to-all with the output layers,
with the firing pattern of each output layer representing the
motor command that is provided to a single joint. Each
neuron in the input layers is connected with an excitatory and
inhibitory synapse to each output neuron. This is equivalent
to representing a single input neuron by a pair of two highly
correlated neurons, one excitatory and one inhibitory. All
synapses are plastic, which means that their original random
weights are modified during the motor babbling period under
STDP.

A common assumption made is that neuronal activity
patterns represent a single value per variable at any given
time [12]. Biological evidence also supports that the activity
level of a population of neurons is characterized by tuning
curves, typically bell-shaped, which describe the mean firing
rates of neurons based on the value of the represented vari-
able. The peak of that curve indicates the “central neuron”
which exhibits the highest sensitivity for a given value of the
variable [13]. In this work, a Gaussian distribution is used to
model the tuning curves in the neuronal layers. Let us assume
that a population of n neurons represents a variable θ, whose
domain is [0, 1] after normalization. If f : [0, 1] → [1, n]
indicates the neuron that exhibits the highest activity for a
specific value of the variable, then the distribution of the
firing rate is given by:

F (x) = Fmax · e−
(x−f(θ0))2

2σ2 (5)

where σ denotes the standard deviation, Fmax is the maxi-
mum firing rate, and F (x) expresses the firing rate of neuron
x when the normalized value θ0 is encoded. While the
process of encoding the value of a variable into spike trains
is important for the input layers, as well as for the output

1In this paper, we use the term “layer” when referring to a group of
input/output neurons.

ϑ1 ϑ2 ϑ3 ϑ4 e1 e2 e3

ϑ2 ϑ3 ϑ4ϑ1

plastic, all-to-all

Fig. 2. Architecture of the feed-forward network. The network includes
seven input layers, where four of them encode information given by
proprioception and the remaining three encode the spatial direction of the
end-effector. The input layers are connected all-to-all with plastic synapses
to four output layers which represent the motor commands to the joints. A
bell-shaped distribution models the mean firing rate in the encoding scheme.

layers in the training phase, the reverse process of decoding
firing patterns from the output layers to motor commands
is important in the “performance period”. A voting scheme
is adopted [12], according to which the “central neuron” is
given by:

r =

n∑
x=1

F (x)x

n∑
x=1

F (x)

(6)

while the normalized motor command is given by f−1(r).
We should now discuss two issues that arise due to the

representation scheme adopted and the nature of the task.
As has been described, we have seven independent layers
of neurons which represent the joint configuration of the
arm and the intended spatial direction of movement of the
end-effector, as well as four layers of motor neurons that
control the four joints. In the task of controlling the robotic
arm, it is highly likely to encounter two joint configurations
ϑ1 and ϑ2 that differ only in the angle of a single joint,
and the movement of the end-effector in the same spatial
direction at the two configurations requires two different sets
of motor commands. In terms of the spiking neural network
this entails that the stimulation in the input layers of two
neuronal populations, which largely overlap and differ only
by a small subset of firing neurons, should be able to result in
the activation of two different sets of motor neurons. This is
autonomously accomplished by the proposed network, which
includes all-to-all connections between the input and the
output neurons, and modifies the initial synaptic weights
through the STDP learning mechanism. STDP manages to
strengthen (weaken) the inhibitory (respectively, excitatory)
synapses between uncorrelated sensory and motor neurons,
and have the opposite effect on synapses between correlated
neurons. A balance is also important between the maximum
allowable inhibitory and excitatory synaptic weights with
respect to the minimum number of firing neurons that can
differ between two potential input patterns. To see the second
issue that arises, let us assume that during the motor babbling
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Fig. 3. A diagram of the system during the training and the performance
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period, the network has to learn that when the arm lies on
the joint configuration ϑ1, the motor command vectors ϑ̇1

and ϑ̇2 move the end-effector in the spatial directions ė1 and
ė2, respectively. This means that the synaptic weights should
adapt so that, the simultaneous stimulation of Linput

i=1:4(ϑ1)
and Linput

i=5:7(ė1) will result in the activation of Loutput
i=1:4 (ϑ̇1).2

Similarly, the simultaneous stimulation of Linput
i=1:4(ϑ1) and

Linput
i=5:7(ė2) should result in the activation of Loutput

i=1:4 (ϑ̇2).
While this can be learned through STDP, a conflict is
encountered if the network is subsequently called to learn
that, when the arm rests in the new joint configuration ϑ2,
the motor command vector ϑ̇1 moves the end-effector in
the spatial direction ė2. That is, the simultaneous stimulation
of Linput

i=1:4(ϑ2) and Linput
i=5:7(ė2) should activate the neurons

in Loutput
i=1:4 (ϑ̇1). If the synaptic weights in the network are

modified to incorporate the last pattern, it is clear that the
stimulation of Linput

i=1:4(ϑ1) and Linput
i=5:7(ė2) would erroneously

result in the activation of both neuron sets Loutput
i=1:4 (ϑ̇1) and

Loutput
i=1:4 (ϑ̇2), while it should only activate Loutput

i=1:4 (ϑ̇2), as
given by the second training pattern. The output firing pattern

2Li(θ0) denotes the set of neurons in the i-th layer which represent the
value θ0.

Loutput
i=1:4 (ϑ̇1) is erroneously activated because the sets of

firing neurons Linput
i=1:4(ϑ1) and Linput

i=5:7(ė2) are individually
shown to be good predictors for Loutput

i=1:4 (ϑ̇1), according to
the first and third pattern under learning. To address this
issue, we modify the population vector scheme and use many
“bins” of neurons to represent a single value of a variable,
which means many possible “central neurons”. In this way,
even when firing patterns have the above characteristic, the
erroneous firing in the output layers can be avoided when at
least one of the four central neurons representing Linput

i=1:4(ϑ1)
is different in the first and second pattern, or Linput

i=5:7(ė2) in
the second and third pattern.

The aforementioned issues would not have been encoun-
tered if were following an alternative approach to represent-
ing the input patterns. As has been discussed, we use N
independent neuronal layers to represent N variables, with
the population of neurons in each layer encoding the value
of a single variable. An alternative representation scheme
that would not cause the issues discussed above would be
to use a single N -dimensional array of neurons, where each
instance of input pattern (i.e., N -tuple) would be represented
by stimulating a unique set of neurons. This representation
however has the important drawback of poor scalability, since
the population of neurons required increases exponentially
with the number of variables represented. In particular, even
if we had just 10 neurons representing a single variable, then
this scheme would necessitate the use of 100000 neurons for
5 variables, and ten times this number if we were adding just
a single variable. It is thus evident that such a representation
can only be considered when the number of variables is
small, and is not suitable for our task.

A. Neuron Model

Many models have been proposed in the literature in
an attempt to simulate the behaviour of real neurons. An
influential model was proposed by Hodgkin and Huxley [9]
who translated their experimental observations on the giant
axon of the squid into a set of nonlinear ordinary dif-
ferential equations. While their model is considered to be
biophysically accurate, their simulation is computationally
expensive. An alternative model is based on integrate-and-
fire neurons which carry much less computational burden.
The shortcoming of this model however is its inability to
reproduce the rich dynamics exhibited by cortical neurons.
In this work, we simulate the individual neurons according
to Izhikevich’s “simple model” [10]. This model preserves
the biologically realistic behaviour exhibited by the Hodgkin-
Huxley model, and at the same time is computationally effi-
cient as the integrate-and-fire model. The low computational
cost is especially important when it comes to simulate large
networks. The efficiency of the model relies on the fact that
it uses only two equations and has only one non-linear term.
In particular, the equations describing the model are given
by:

v̇ = 0.04v2 + 5v + 140− u + I (7)

u̇ = a(bv − u) (8)
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with after-spike resetting:

if v ≥ 30 then

{
v ← c
u← u + d

(9)

where v denotes the neuron’s membrane potential, I is the
input current, and u is the variable that determines the
recovery period of the neuron after spiking. The membrane
recovery variable u provides negative feedback to the mem-
brane potential v, and emulates the activation of K+ ionic
currents and the inactivation of Na+ ionic currents. There are
four parameters that alter the behaviour of a neuron, namely
a, b, c and d, that can be set to accurately simulate a large
variety of types of neurons. In particular, a determines the
time scale of the recovery period, b represents the coupling
between u and v, while c and d denote the after-spike reset
values for v and u, respectively. Characteristic values of
these parameters are a = 0.02, b = 0.2, c = −65mV and
d = 2. According to this model, a spike is produced when
the membrane potential of a neuron reaches the threshold of
30 mV.

The simulation is run in discrete time, setting the time step
to 1 msec. At each simulation step t, the incoming current
I(t) for a neuron i is updated based on the activity of a set
of presynaptic neurons Q which are connected to neuron i
with a conductance delay δ and fired at the time step t− δ.
In particular,

I(t) = Ib +
∑
j∈Q

Si,jF (10)

where Ib is the base current, Si,j is the synaptic weight
from neuron j to neuron i, and F is a scaling factor. In
our simulation, F = 0.2 and δ = 1 msec.

B. Learning Mechanism: Spike Timing-Dependent Plasticity

Spike Timing-Dependent Plasticity is regarded as a bi-
ologically plausible learning mechanism that modifies the
synaptic strength between real neurons. Its exact form varies
between different types of synapses and many models have
been proposed ( [11], [14]–[16]). Common differences be-
tween the various versions of STDP is the amount of change
in weights, the dependence or not of the weight update on the
current synaptic weight, and the time windows that are exam-
ined before and after the spike of the postsynaptic neuron. In
this work, we use the symmetric version of STDP [17], which
has been found in [6] to be robust to the temporal structure
of the input patterns. In this version of STDP, the decision
of whether a synapse should be potentiated or depressed
does not depend on the temporal order of the events (arrival
of the presynaptic spike at postsynaptic neuron before/after
the firing of the postsynaptic neuron), but instead on their
absolute time difference | tpost − tpre |. That is, synapses
are potentiated when they deliver spikes slightly before or
after the firing of the postsynaptic neuron, while they get
depressed when the time lag is greater (see Figure 4). This
rule is described by:

ΔSi,j = Asym

(
1−

(
Δt

τa

)2
)

e
− |Δt|

τb (11)
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Fig. 4. Symmetrical STDP. The dotted line illustrates the symmetrical
STDP rule for τa = 10 msec and τb = 12 msec, the dashed line for
τa = 15 msec and τb = 12 msec, and the solid line for τa = 10 msec
and τb = 10 msec. As can be observed, the solid line and the dotted line
have the same positive time window (i.e., the same τa), while the dashed
line has the smallest depression area.

where ΔSi,j denotes the weight update between the presy-
naptic neuron j and postsynaptic neuron i, Asym is a coeffi-
cient that controls the magnitude of the synaptic change, τa

determines the time window in which the incremental change
of weights is positive, the ratio τa

τb
controls the balance

between potentiation and depression, and Δt = tpost − tpre.
In the present work, we set Asym = 0.05, τa = 10msec, and
τb = 10msec. The time window between presynaptic and
postsynaptic neurons that are included in STDP is set to 50
msec.

IV. EXPERIMENTS

The proposed spiking neural network has been tested on
controlling the kinematic model of the arm of a humanoid
robot, called iCub. This robot has been developed as part
of the RobotCub project3 and has been designed to resemble
the size of a 3.5 year old child. It has 53 degrees of freedom,
weights around 22 kg, and is approximately 1 m tall. Each
arm has seven DoFs, with three of them located on the
shoulder, one DoF located on the elbow and three DoFs on
the wrist. In the present work, we control the four upper
DoFs of the iCub’s arm, but the extension of the proposed
spiking neural network to control all of the seven DoFs is
straightforward.

During the training stage, a set of configurations of the arm
are selected as “home” positions. The Endogenous Random
Generator sends random motor commands, in the range of
[−5o, 5o] at each joint, and their effect on the spatial position
of the end-effector is computed based on forward kinematic
equations, according to the Denavit-Hartenberg parameters of
the iCub’s arm [18]. Each iteration includes four movements
of the arm, and for each movement, the neurosimulation
encodes the joint positions, the spatial direction of movement
and the motor commands with a firing stimulus of 20 msec

3http:://www.robotcub.org

4108



joint 1:

joint 2:

joint 3:

joint 4:

direction x:

direction y:

direction z:

-50

-30

23

53

0

30

42

22

0

0

0.7

-0.7

0.7

-0.7

-1  3 5  -4 -4 -3 5   2

joint commands

(1) (2) (3) (4)

motor neurons

in
p
u
t
 
n
e
u
r
o
n
s

(
p
r
o
p
r
io
c
e
p
t
io
n
,
 
t
a
r
g
e
t
 
s
p
a
t
ia
l 
d
ir
e
c
t
io
n
)

motor neurons motor neurons

motor neurons motor neurons motor neurons

in
p
u
t
 
n
e
u
r
o
n
s

(
p
r
o
p
r
io
c
e
p
t
io
n
,
 
t
a
r
g
e
t
 
s
p
a
t
ia
l 
d
ir
e
c
t
io
n
)

iteration 0: Random Synaptic Weights iteration 40: iteration 100:

iteration 200: iteration 400: iteration 700:

Fig. 5. The connectivity matrix between a set of input and motor neurons (see text). The matrix is shown for the iterations 0, 40, 100, 200, 400 and 700.
Darker color indicates lower synaptic weights. As can be seen, the synaptic weights start from random values before training, and their values change to
accommodate the correlation between input and output patterns. In the specific example, two different central neurons have been assigned to represent the
value 0 in the fifth input layer that represents the spatial direction x, as has been explained in the text.

in the respective neuronal layers. An interval of 50 msec is
set between the firing patterns that represent two consecutive
movements. In the simulation, a background noise of 3 Hz
is used in both input and output layers in order to weaken
the synaptic weights between uncorrelated neurons.

The connectivity matrix for a subset of the synaptic
weights between input and motor neurons during the training
stage is shown in Figure 5, where darker colors represent
weaker synapses. The set of input neurons included in the
connectivity matrix shown represent the arm configurations
ϑ1 = [−50o, 23o, 0o, 42o] and ϑ2 = [−30o, 53o, 30o, 22o],
as well as the spatial directions ė1 = [0, 0.7, 0.7] and ė2 =
[0,−0.7,−0.7]. Similarly, the set of motor neurons included
represent the motor commands ϑ̇1 = [−1o, 5o,−4o, 5o] and
ϑ̇2 = [3o,−4o,−3o, 2o]. We have selected this set of input
and motor neurons for illustration, as the motor commands

ϑ̇1 move the arm from the configuration ϑ1 in the direction
ė1, and the motor commands ϑ̇2 move the arm from the
pose ϑ2 in the direction ė2. Recall that we have 7 input
layers and 4 output layers, and these layers are separated
in the connectivity matrix with thick yellow lines. As can
be seen in the upper-left corner of Figure 5, the synaptic
weights are initially set to random values. As the training
takes place, we can observe that progressively the synaptic
weights between the correlated neurons (ϑ1, ė1) and ϑ̇1

increase, while the synaptic weights between the uncorrelated
(ϑ1, ė1) and ϑ̇2 decrease. At the 700th iteration, we can see
that the correlation between (ϑ2, ė2) and ϑ̇2 has also been
established.

After training, the network is able to generate those motor
commands which, for a given arm configuration, move the
end-effector in the desired spatial direction. In particular,
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Fig. 6. Raster plot of the output layers. We consider three arm configurations, and for each configuration, we set five desired spatial directions. The
time windows [0,350], [350, 670], and [670, 1000] refer to the three arm poses. Note that the first desired direction in each pose is the same, but
different motor commands are required. The arm configurations considered are: [−50o, 23o, 0o, 42o], [−30o, 53o, 30o, 22o], [−20o, 65o, 40o, 60o], while
the spatial directions given are: [0 0.7 0.7; 0 1 0; 0 0 1; 0 -0.7 -0.7; 0 -1 0] (for the first arm pose), [0 0.7 0.7; 0.7 0 -0.7; 0.7 0.7 0; -0.7 -0.7 0; 0 -0.7
-0.7] (for the second arm pose), and [0 0.7 0.7; 0 1 0; 0.5 0.5 -0.7; 0 -0.7 -0.7; 0 -1 0] (for the third arm pose).

we consider three arm poses, which have also been used as
“home” positions during the training stage, and set, for each
pose, five desired spatial directions. The resulting raster plot
of the output layers is shown in Figure 6, which is decoded
into motor commands in order to move the end-effector in
the desired spatial directions. It is worth noting that the same
spatial direction in the three arm poses requires different
motor commands, and thus necessitates the activation of
different output neurons. This is achieved in the proposed
network, even though there is a partial overlapping in the
input stimuli due to the fact that the input layers Linput

i=5:7

encode the same spatial direction. The desired directions
and the actual directions of movement produced by the
decoded motor commands can be seen in Figure 7, where the
mean difference is 7o. The error can be decreased by using
smaller discretization bins for the spatial direction during the
training stage (currently, the bin size is 45o). Finally, Figure 8
illustrates the joint angles of the arm that the spiking neural

network provides when aiming to move the end-effector in
a certain spatial direction (i.e., [0 0.7 0.7]) for consecutive
steps.

V. CONCLUSION

In this paper, we have presented a spiking neural network
that autonomously learns to control a four degree-of-freedom
robotic arm in three dimensional space. The neural network
consists of approximately 12000 Izhikevich’s neurons, and
has a feed-forward architecture. The input layers of the
network encode the joint positions of the arm and the desired
spatial direction of the end-effector, and the output layers
represent the corresponding motor commands. We have cho-
sen this architecture due to the fact that the set of motor
commands that drive the end-effector in a certain spatial
direction is only valid in a local region of the joint space, and
thus, the input firing pattern should encode the desired spatial
direction in conjunction with the current joint configuration
of the arm. The training takes place during a motor babbling
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Fig. 7. The desired directions and the actual directions of movement
produced by the decoded motor commands.
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Fig. 8. The arm initially rests on the joint configuration
[−50o, 23o, 0o, 42o]. The figure depicts the joint angles as they have been
updated by the neural network when moving the end-effector towards the
spatial direction [0 0.7 0.7]. Symbols ‘*’, ‘o’, ‘�’ and ‘�’ correspond to
the first, second, third and fourth joint respectively.

period, and Spike Timing-Dependent Plasticity has been
used as the learning mechanism. We have shown that this
mechanism is able to temporally associate the input and
output patterns, modify the synaptic weights accordingly,
and train the network to perform the mapping from spatial
commands to joint commands. An important feature of
the proposed network is its scalability with respect to the
number of degrees of freedom, as the population of neurons
required increases linearly with the number of joints. The
current implementation of the network is computationally
costly (several seconds of processing time are required per
arm movement). In future work, we aim to implement the
proposed network using our GPU architecture [19] in order
to achieve real-time performance.
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